

Technical Specification

Model:

ATD1K5-7212-F

ATD1K5-11512-F

ATD1K5-14412-F

ATD1K5-32012-F

Name: 1.5KW DC/DC Converter Fan System

Version: V1.0 Issue Date: 2019-3-6

Content

1.	Overview	4
	1.1 Subject	4
	1.2 Main Features	4
2.Siz	ze and Appearance	4
	2.1Size and Weight	4
	2.2 Appearance	5
3.D	C/DC Converter technical specification	5
	3.1 Environment Specification	5
	3.2 DC/DC Converter regulatory requirements and reference standards	6
4.D0	C/DC Concerter safty regulation	7
5.D0	C/DC Converter electrical performance	7
	5.1 Input	7
	5.2 Output	7
	5.3 Environment test	8
6.D0	C/DC Converter protection Functions	8
7.In	terface	9
	7.1High Voltage Input connector and pin definition	9
	7.2 Signal connector and pin definition	10
	7.2.1 Signal connector 1:	10
	7.2.2 Signal connector2:	10
	7.3 Low voltage output connector and pin definition	11
8 S :	afe Guide	11

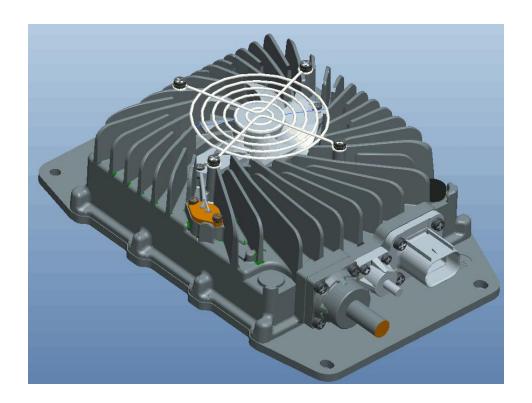
Version	Update	Edit	Audit	Approval	Date
V1.0	Draft	Tianxiang Pan	Lizhen Tang	Hongbin Zhang	2019.3.1

1.Overview

1.1 Subject

ATD1K5 Series1.5KW DC/DC Converter Fan System is designed by ANNREN Technologies Co., Ltd according to DC national standard, which provide 12V low voltage DC power for vehicles. The output can connect to 12V back-up battery, DC-DC converter will make the charge management to the back-up battery. This product not only has the advantages of high efficiency, small size, high stability, long-lifetime but also with the performance of high protection level, high reliability, more protection functions, it is an ideal solution for electrical vehicle. Thermal sensor is built-in the charger, has the function of over-temperature and can auto-recovery when temperature decreased. With the process of full-sealing, achieve the protection level of IP67, which make sure the excellent working under the complicated operation condition.

1.2 Main Features


- 1.2.1 Fully sealed process, fan forced heat dissipation
- 1.2.2 Buit-in thermal sensor, shut off when temperature up to 110° C
- 1.2.3 Protection level is IP67, and it can work safely under short-term flooding conditions
- 1.2.4 In line with CAN2.0 communication specification, BUS display working status, fault code, etc

2. Size and Appearance

2.1 Size and Weight

Cool Way	Length (mm)	Width (mm)	Height (mm)	GW (KG)
Fan-Cooled	278±1	182.2±1	78.5±2	3

2.2 Appearance

3.DC/DC Converter Technical Specification

3.1 Environment Specification

▲ Working environmental temperature

Area	Lowest Temperature	Highest Temperature
Global	-40℃	60℃

▲Storage environmental temperature

Area	Lowest Temperature	Highest Temperature
Global	-40℃	105℃

▲Storage environmental temperature

▲Altitude: ≤2000m

▲Working noisy: max when working ≤ 70dB, meet China standard GB-T24347-2009

3.2 DC/DC Converter Regulations requirements and reference standards

No.	Standard Code	Standard Name	Remark	
1	GB/T 24347-2009	Electric vehicle DC/DC converter	/	
2	GB/T 18488.1-2015	Electric motors and their controllers for electric vehicles -	/	
	GB/1 10400.1-2013	part 1: technical conditions	,	
3	GB/T 18384.2-2015	Safety requirements for electric vehicles - part 2:	/	
	OB/1 10304.2-2013	functional safety and fault protection	/	
4	GB/T 18384.3-2015	Safety requirements for electric vehicles - part 3:	/	
	OB/1 10004.0-2010	protection against shock to personnel		
5	GB/T 18387-2008	Limits and measurement methods for electromagnetic	/	
	02/1 1000/ 2000	field emission intensity of electric vehicles		
6	GB/T 31498-2015	Post-crash safety requirements for electric vehicles	/	
7	GB 9254-2008	Limits and methods for measurement of radio	/	
	OB 0204-2000	harassment for information technology equipment		
		Limits and measurement methods for radio disturbance		
8	GB/T 18655-2010	characteristics of vehicles, ships and internal combustion	/	
		engines used to protect vehicle-mounted receivers		
9	GB 29743-2013	Motor vehicle engine coolant	/	
10	GB 4208	Enclosure protection level (IP code)	/	
	GB/T 28046-2	Environmental conditions and tests for electrical and		
11		electronic equipment for road vehicles - part 2: electrical	/	
		loads		
		Road vehicles - environmental conditions and tests for		
12	GB/T 28046-3	electrical and electronic equipment - part 3: mechanical	/	
		loads		
		Environmental conditions and tests for electrical and		
13	GB/T 28046-4	electronic equipment for road vehicles - part 4: climatic	/	
		loads		
14	GB/T 2423.34-2012	Environmental test - part 2: test method test Z/AD:	/	
		combined temperature/humidity cycle test		
15	GB/T 2423.1-2008	Environmental testing of electrical and electronic	/	
		products - part 1: test methods - test B: low temperature	•	
16	GB/T 2423.2-2008	Environmental tests for electrical and electronic products	/	
		- part 2: test methods - test B: high temperature	-	
4-	00/7 0/65 5 555	Electrical and electronic products - environmental tests -	,	
17	GB/T 2423.3-2008	part 2: test methods - Cab: constant heat and humidity	/	
	00/7 0/65 /- 555	test		
18	GB/T 2423.17-2008	Environmental tests for electrical and electronic products	/	

		- part 2: test methods : salt spray	
19	GB/T 30512-2014	Prohibited substances requirements for automobiles	/
20	1 407	Basic technical conditions of automotive electrical	/
20		equipment	

4.DC/DC Converter Safety Regulations Specification

	Condition	Requirement
Grounding resistance test	@25A/AC	≤100mΩ
Input insulation test	@1000V/DC	≥20MΩ
Input withstand test	@2000V/DC 1min	Leak current≤10ma

5.DC/DC Converter Electrical Performance

5.1 Input

	Nominal Voltage	DC72V	DC115V	DC144V	DC2320V	1	1
Input	Input voltage range	55~97V	72~138V	88~195V	206~454V	1	1

5.2 Output

	Nominal output voltage		14V	
	Output voltage range		9~15V	
	Nominal output current		110A	
	Peak current		140A	
	Nominal power		1500W	
Output	Peak power	1800W last 6 minutes		
Output	Efficiency	≥94%		
	Dynamic response time	<50ms		
	Voltage regulation		≤1%	
	Load regulation	≤1%		
	Voltage control accuracy	≤1%		

Cu	rrent control accuracy	≤2%
	Quiescent current	≤1mA @14V
Ri	pple voltage coefficient	≤2% @nominal working state

5.3 Environment Test

Humidity test	Meet GB/T 24347-2009 6.1.2
Low temperature test	Meet GB/T 24347-2009 6.1.1.1
High temperature test	Meet GB/T 24347-2009 6.1.1.2
Salt-spray Test	Meet GB/T 24347-2009 6.1.3
EMI	Meet GB/T 18487.3-2001 11.3.1
EMD	Meet GB/T 18487.3-2001 11.3.2
Salt-spray Test	IP67
EMI	$10\sim25$ Hz swing 1.2mm, $25-500$ Hz 30 m/S 2 , 8 hours each direction
мтвғ	150000H

6. DC/DC Converter Protection Functions

	Input	72V	115V	144V	320V	1
	over-voltage protection	>97V	>138V	>195V	>454V	/
	Input	72V	115V	144V	320V	1
	low-voltage protection	<55V	<72V	<88V	<206V	/
Protection Functions	Output over-voltage protection	Output voltage over-voltage protection threshold is 16±0.5V, working recovery after voltage back to≤14±0.2V				
	Output low-voltage protection	Output voltage low-voltage protection threshold is 7±1V, working recovery when voltage rise to≥9±0.2V				
	Output over-current protection	Reduces the output voltage when the output current exceeds the maximum output current				
	Over-temperatu	Power start to decrease when internal temperature rise to 100°C,				
	re protection	shut off when rise to 110 $^{\circ}\mathrm{C}$, auto-recovery when power decreased				
	Short circuit protection	Yes, auto-recovery				

7.Interface

The interface for DC/DC converter, electrical vehicle and battery includea low voltage interface and a high voltage interface. Low voltage interface includes signal connector and DC/DC output. High voltage interface include DC/DC input.

Connectors can be appointed by customer if quantity order is more than 5000pcs.

Note: Configure high voltage fuse with 1.5 times maximum voltage/current for the DCDC input, which located in high voltage distribution box.

7.1 High Voltage Input Connectors and Pins Definition

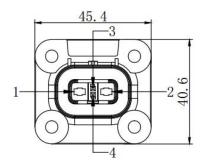


Chart 1 DC/DC Input

The product End: 2103124-4		Client End: 4-2103177-4		
Brand	Pin	Definition	Wire diameter(mm²)	
TaiKe	1	Positive Pole	Red/2.5	
	2	Negative Pole	Black/2.5	
	3	/	/	
	4	/	/	

7.2 Signal Connector and Pins Definition

7.2.1 Signal Connector form 1:

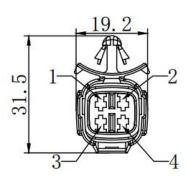


Chart 1 DC/DC Signal

The product End: PP0427303		Client End: PP0144904		
BRAND	Pin 脚	Definition	mm²	
	1	ENABLE	Blue/0.5	
TIANILIAI	2	Fault signal output	Yellow/0.5	
TIANHAI	3	HVIL 1	Grey/0.5	
	4	HVIL 2	Brown/0.5	

7.2.2 Signal Connector form 2:

The product End: DJ7041-1.5-21		Client End: DJ7041-1.5-11		
Brand	Pin 脚	Definition	mm²	
TianHai	1	CAN/H	Red/0.5	
	2	CAN/L	Black/0.5	
	3 CAN/GNE	CAN/GND	Grey/0.5	
	4	ENABLE	Brown/0.5	

7.3 Low voltage Output Connector and Pins Definition

The product I	End: M6 Nut	Client End: M6 Screw		
Brand	Pin 脚	Definition	mm²	
TC	DC Output	14V	Red/25	

8. Safety Guidelines

Warning: Remind users of the danger of operating with power on:

- * Strictly prohibited to disassemble and modify the device for repair or debugging.
- * Do not place the parts in a rainy location.
- *Before installation, please confirm that the shell is in good condition. If there is any damage, please replace it immediately or contact the after-sales service.
- *Each plug and socket should be securely connected. If damaged or loose, please replace immediately.

- * Do not plug or remove the connector when the product is powered on. Otherwise, personal injury may occur.
- * Do not open the shell when the product is powered on. Otherwise, personal injury may be caused.
- * Do not touch the high-voltage live parts of the product with bare hands. Please wear insulation gloves, shoes and clothes when testing and maintaining the product. Electrical live maintenance and testing are strictly prohibited.
- * When replacing the fuse or contactor, do not operate recklessly to avoid damaging the product and causing potential safety risks.
 - *Select a three-core AC power cable with a ground cable, and install the ground cable correctly.
- *Any abnormal sound or odor during the operation of the charger, please pullout the power plug.
- *When charging the battery normally, please keep away from fire sources and inflammable and explosive materials.
 - *Do not charge damaged or non-rechargeable batteries

Note: Remind the user that the operations below are important operations of the product.

- *Do not block the air inlet and outlet of the product to prevent overheating.
- *Ensure that the output cable is not too long to avoid the impact of line voltage drop on charging.
- *Disconnect the power cord and charging plug when moving this product
- *The battery voltage must be consistent with the nominal voltage of the charger.

- *Avoid collision, compression, and do not pull, twist or shake the charging cable.
- *Products should be placed in a safe, draft-free and rain-free environment.
- *Long-term non-use,please pack and store.